Area Between Curves

In this section we calculate the area between two curves.

FIGURE I
$S=\{(x, y) \mid a \leqslant x \leqslant b, g(x) \leqslant y \leqslant f(x)\}$

(b) Approximating rectangles

If we wish to estimate the area or the region shown above, between the curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, we can use n approximating rectangles of width $\Delta x=\frac{b-a}{n}$ as shown in the picture on the right. We can choose the height of each approximating rectangle to be $f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)$ where x_{i}^{*} is some point in the interval $\left[x_{i-1}, x_{i}\right]$. The sum of these rectangles

$$
\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x
$$

is an approximation of the area of the region S shown in the diagram. Using the limiting process as before we get the area of the region S is given by

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x .
$$

From our definition of the definite integral we get that the above limit is a definite integral:

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

Example Sketch the region bounded above by $y=x^{3}+2$, below by $y=1-x^{2}$ and on the sides by the lines $x=0$ and $x=1$ and calculate its area.

Example Sketch the region enclosed by the curves $y=2 x^{2}$ and $y=1-2 x^{2}$ and find its area.

In the picture above the curves cross and it is not difficult to see that the area between the curves $y=f(x)$ and $y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

Example Calculate the area between the curves $y=-x^{2}+3 x$ and $y=2 x^{3}-x^{2}-5 x$.

If we are dealing with functions of y, the area between the curves $x=f(y)$ and $x=g(y)$ and the lines $y=c$ and $y=d$ can found by using the same methods and an integral with respect to y .

In this case The area between the curves is given by

$$
A=\int_{c}^{d}(f(y)-g(y)) d y
$$

Example Find the area enclosed by the parabola $x=y^{2}$ and the line $x=y+2$.

Example Find the area enclosed by the curves $x=\cos y, x=2-\cos y$ and the lines $y=0$ and $y=\pi$. A sketch of these two curves will show that between $y=0$ and $y=\pi$, the curves meet only at $y=0$. Also on that interval $2-\cos x \geq \cos x$. Therefore the area between the curves for $0 \leq y \leq \pi$ is given by

$$
\int_{0}^{\pi} 2-\cos y-\cos y d y=\int_{0}^{\pi} 2-2 \cos y d y=2 y-\left.2 \sin y\right|_{0} ^{\pi}=2 \pi
$$

