Area Between Curves

In this section we calculate the area between two curves.

If we wish to estimate the area or the region shown above, between the curves y = f(x) and y = g(x) and between the vertical lines x = a and x = b, we can use n approximating rectangles of width $\Delta x = \frac{b-a}{n}$ as shown in the picture on the right. We can choose the height of each approximating rectangle to be $f(x_i^*) - g(x_i^*)$ where x_i^* is some point in the interval $[x_{i-1}, x_i]$. The sum of these rectangles

$$\sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x$$

is an approximation of the area of the region S shown in the diagram. Using the limiting process as before we get the area of the region S is given by

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x.$$

From our definition of the definite integral we get that the above limit is a definite integral:

$$A = \int_{a}^{b} \left(f(x) - g(x) \right) dx.$$

Example Sketch the region bounded above by $y = x^3 + 2$, below by $y = 1 - x^2$ and on the sides by the lines x = 0 and x = 1 and calculate its area.

Example Sketch the region enclosed by the curves $y = 2x^2$ and $y = 1 - 2x^2$ and find its area.

In the picture above the curves cross and it is not difficult to see that the area between the curves y = f(x) and y = g(x) and the lines x = a and x = b is

$$\int_{a}^{b} \left| f(x) - g(x) \right| dx.$$

Example Calculate the area between the curves $y = -x^2 + 3x$ and $y = 2x^3 - x^2 - 5x$.

If we are dealing with functions of y, the area between the curves x = f(y) and x = g(y) and the lines y = c and y = d can found by using the same methods and an integral with respect to y.

In this case The area between the curves is given by

$$A = \int_{c}^{d} \left(f(y) - g(y) \right) dy$$

Example Find the area enclosed by the parabola $x = y^2$ and the line x = y + 2.

Example Find the area enclosed by the curves $x = \cos y$, $x = 2 - \cos y$ and the lines y = 0 and $y = \pi$. A sketch of these two curves will show that between y = 0 and $y = \pi$, the curves meet only at y = 0. Also on that interval $2 - \cos x \ge \cos x$. Therefore the area between the curves for $0 \le y \le \pi$ is given by

$$\int_0^{\pi} 2 - \cos y \, dy = \int_0^{\pi} 2 - 2\cos y \, dy = 2y - 2\sin y \bigg|_0^{\pi} = 2\pi x$$